Search results

Search for "pair distribution function" in Full Text gives 6 result(s) in Beilstein Journal of Nanotechnology.

Sodium doping in brookite TiO2 enhances its photocatalytic activity

  • Boxiang Zhuang,
  • Honglong Shi,
  • Honglei Zhang and
  • Zeqian Zhang

Beilstein J. Nanotechnol. 2022, 13, 599–609, doi:10.3762/bjnano.13.52

Graphical Abstract
  • atomic pair distribution function based on electron diffraction. High-resolution transmission electron microscopy results revealed the existence of a core–shell structure, lattice distortion, interstitial atoms, and atomic vacancies in NaxTi1−xO2, which is critical for an excellent photocatalytic
  • ] and ePDF tools [37] were used to perform pattern indexing and to extract the atomic pair distribution function (PDF). The UV absorption spectra of MB during photocatalytic reactions over samples calcinated at (a) 400 °C, (b) 500 °C. (c) The photodegradation of MB by samples calcinated at 300–600 °C
  • Na0.152Ti0.848O2 and green for the anatase). The difference between the experimental (black dots) and the calculated (solid line) intensities is shown by the plot in the lower part of the pattern. (b) The reduced atomic pair distribution function G(r) extracted from the ring-like electron diffraction pattern
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2022

Surfactant-free syntheses and pair distribution function analysis of osmium nanoparticles

  • Mikkel Juelsholt,
  • Jonathan Quinson,
  • Emil T. S. Kjær,
  • Baiyu Wang,
  • Rebecca Pittkowski,
  • Susan R. Cooper,
  • Tiffany L. Kinnibrugh,
  • Søren B. Simonsen,
  • Luise Theil Kuhn,
  • María Escudero-Escribano and
  • Kirsten M. Ø. Jensen

Beilstein J. Nanotechnol. 2022, 13, 230–235, doi:10.3762/bjnano.13.17

Graphical Abstract
  • opposed to the case of Pt or Ir NPs. The robustness of the synthesis for a precursor concentration up to 100 mM allows for the performance of X-ray total scattering with pair distribution function (PDF) analysis, which shows that 1–2 nm hexagonal close packed (hcp) NPs are formed from chain-like [OsOxCly
  • ] complexes. Keywords: metal nanoparticles; osmium; pair distribution function; surfactant-free synthesis; Findings Precious metals are limited resources, yet fundamental for a range of applications, such as in medicine or catalysis [1][2][3]. There are relatively few reports on osmium (Os) compared to
  • turned to X-ray total scattering and pair distribution function (PDF) analyses to investigate the atomic structure of the Os NPs [33]. The pair distribution function is now widely used for nanomaterial characterization, as it allows to obtain atomic structure information from materials showing no long
PDF
Album
Supp Info
Letter
Published 16 Feb 2022

Alloyed Pt3M (M = Co, Ni) nanoparticles supported on S- and N-doped carbon nanotubes for the oxygen reduction reaction

  • Stéphane Louisia,
  • Yohann R. J. Thomas,
  • Pierre Lecante,
  • Marie Heitzmann,
  • M. Rosa Axet,
  • Pierre-André Jacques and
  • Philippe Serp

Beilstein J. Nanotechnol. 2019, 10, 1251–1269, doi:10.3762/bjnano.10.125

Graphical Abstract
  • discarded. Wide angle X-ray scattering (WAXS) analysis was performed on Pt3Co/N-CNT and Pt3Ni/N-CNTHT (Figure 8). After corrections and taking a Fourier transform of the scattering data, the related pair distribution function (PDF) is well defined, with a low structural disorder. For Pt3Co/N-CNT, the
  • performed on a diffractometer dedicated to pair distribution function (PDF) analyses: graphite-monochromatized molybdenum radiation (0.07169 nm), solid state detection and low background setup. The samples were sealed in Lindemann glass capillaries (diameter 1.5 mm). The MEA cross-sections were prepared by
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2019

Atomic structure of Mg-based metallic glass investigated with neutron diffraction, reverse Monte Carlo modeling and electron microscopy

  • Rafał Babilas,
  • Dariusz Łukowiec and
  • Laszlo Temleitner

Beilstein J. Nanotechnol. 2017, 8, 1174–1182, doi:10.3762/bjnano.8.119

Graphical Abstract
  • Archimedes method. The following cut-off distances were entered throughout the simulation runs: Mg–Mg, 0.32 nm; Mg–Cu, 0.29 nm; Mg–Y, 0.34 nm; Mg–Ni, 0.28 nm; Cu–Cu, 0.26 nm; Cu–Y, 0.31 nm; Cu–Ni, 0.25 nm, Y–Y, 0.36 nm; Y–Ni, 0.30 nm; Ni–Ni, 0.25 nm. The partial pair distribution function, g(r), was
PDF
Album
Full Research Paper
Published 31 May 2017

First examples of organosilica-based ionogels: synthesis and electrochemical behavior

  • Andreas Taubert,
  • Ruben Löbbicke,
  • Barbara Kirchner and
  • Fabrice Leroux

Beilstein J. Nanotechnol. 2017, 8, 736–751, doi:10.3762/bjnano.8.77

Graphical Abstract
  • distribution function of the same atom pair (right). The numbers refer to the molecules in the simulation box. Combined distribution function of the intramolecular O–H distances (including only the bonding oxygen) on the x-axis. The y-axis is (from left to right) the O(anion)–H distance, the O(cation)–H
  • temperature is as follows: 1000/T (K−1) = 3.861, 3.745, 3.643, 3.545, 3.452, 3.364, 3.282, 3.204, 3.130, 3.060, 2.994, 2.930, 2.870, 2.813. Full temporal development (from equilibrium search to production run) of all 32 intramolecular O–H distances in the SO3H group (left) along with the radial pair
PDF
Album
Full Research Paper
Published 29 Mar 2017

Extended X-ray absorption fine structure of bimetallic nanoparticles

  • Carolin Antoniak

Beilstein J. Nanotechnol. 2011, 2, 237–251, doi:10.3762/bjnano.2.28

Graphical Abstract
  • distribution function (PDF) of atoms around the absorber atom. To account for thermal or configurational disorder, the complex wavenumber p is introduced and should be used instead of k. The imaginary part of p represents losses of photoelectron coherence, which includes the mean free path and core-hole
  • as FEFFIT [56], based on the FEFF algorithm, try to find the best agreement between the calculated EXAFS and experimental data either in k-space or after Fourier transformation in real space. FEFFIT uses the cumulant expansion method [57][58] with the first four cumulants (ΔR, σ2, C3, C4) of the pair
PDF
Album
Review
Published 11 May 2011
Other Beilstein-Institut Open Science Activities